CSIRSpace

Piloting a surveillance system to monitor the global patterns of drug efficacy and the emergence of anthelmintic resistance in soil-transmitted helminth control programs: a Starworms study protocol

Item

Title

Piloting a surveillance system to monitor the global patterns of drug efficacy and the emergence of anthelmintic resistance in soil-transmitted helminth control programs: a Starworms study protocol

Date

2020

Language

English

Abstract

To eliminate soil-transmitted helminth (STH) infections as a public health problem, the administration of benzimidazole (BZ) drugs to children has recently intensified. But, as drug pressure increases, the development of anthelmintic drug resistance (AR) becomes a major concern. Currently, there is no global surveillance system to monitor drug efficacy and the emergence of AR. Consequently, it is unclear what the current efficacy of the used drugs is and whether AR is already present. The aim of this study is to pilot a global surveillance system to assess anthelmintic drug efficacy and the emergence of AR in STH control programs. For this, we will incorporate drug efficacy trials into national STH control programs of eight countries (Bangladesh, Cambodia, Lao PDR, Vietnam, Ghana, Rwanda, Senegal and a yet to be defined country in the Americas). In each country, one trial will be performed in one program implementation unit to assess the efficacy of BZ drugs against STHs in school-aged children by faecal egg count reduction test. Stool samples will be collected before and after treatment with BZs for Kato-Katz analysis and preserved to purify parasite DNA. The presence and frequency of known single nucleotide polymorphisms (SNPs) in the β-tubulin genes of the different STHs will subsequently be assessed. This study will provide a global pattern of drug efficacy and emergence of AR in STH control programs. The results will provide complementary insights on the validity of known SNPs in the ß-tubulin gene as a marker for AR in human STHs as well as information on the technical and financial resources required to set up a surveillance system. Finally, the collected stool samples will be an important resource to validate different molecular technologies for the detection of AR markers or to identify novel potential molecular markers associated with AR in STH.

Author

Vlaminck, J.; Cools, P.; Albonico, M.; Ame, S.; Chanthapaseuth, T.; Viengxay, V.; Trung, D. D.; Osei-Atweneboana, M. Y.; Asuming-Brempong, E.; Karim, M. J.; Kawsar, A. A.; Keiser, J.; Khieu, V.; Faye, B.; Turate, I.; Mbonigaba, J. B.; Ruijeni, N.; Shema, E.; Luciañez, A.; Nicholls, R. S.; Jamsheed, M.; Mikhailova, A.; Montresor, A.; Mupfasoni, D.; Yajima, A.; Mwinzi, P. N.; Gilleard, J.; Prichard, R. K.; Verweij, J. J.; Vercruysse, J.; Levecke, B.

Collection

Citation

“Piloting a surveillance system to monitor the global patterns of drug efficacy and the emergence of anthelmintic resistance in soil-transmitted helminth control programs: a Starworms study protocol,” CSIRSpace, accessed January 22, 2025, http://cspace.csirgh.com/items/show/1013.